Continua Explorando

domingo, 30 de octubre de 2011

IdEnTiDaDeS tRiGOnOmEtRiCaS

CONCEPTO

Es una igualdad entre expresiones que contienen funciones trigonometricas y es valida para todas las funciones del angulo en los que esta definida las funciones

Identidades trígonométricas fundamentales

Relación seno coseno

cos² α + sen² α = 1

Relación secante tangente

sec² α = 1 + tg² α

Relación cosecante cotangente

cosec² α = 1 + cotg² α
cosecante
secante
cotangente
Funciones trigonométricas en función de las otras cinco.
sen \operatorname{sen} \theta\  \sqrt{1 - \cos^2\theta}  \frac{\tan\theta}{\sqrt{1 + \tan^2\theta}}  \frac{1}{\sqrt{1+\cot^2\theta}}  \frac{\sqrt{\sec^2 \theta - 1}}{\sec \theta}  \frac{1}{\csc \theta}
cos \sqrt{1 - \operatorname{sen}^2\theta}  \cos \theta\  \frac{1}{\sqrt{1 + \tan^2 \theta}}  \frac{\cot \theta}{\sqrt{1 + \cot^2 \theta}}  \frac{1}{\sec \theta}  \frac{\sqrt{\csc^2\theta - 1}}{\csc \theta}
tan \frac{\operatorname{sen}\theta}{\sqrt{1 - \operatorname{sen}^2\theta}}  \frac{\sqrt{1 - \cos^2\theta}}{\cos \theta}  \tan \theta\  \frac{1}{\cot \theta}  \sqrt{\sec^2\theta - 1}  \frac{1}{\sqrt{\csc^2\theta - 1}}
cot {\sqrt{1 - \operatorname{sen}^2\theta} \over \operatorname{sen} \theta}  {\cos \theta \over \sqrt{1 - \cos^2\theta}}  {1 \over \tan\theta}  \cot\theta\  {1 \over \sqrt{\sec^2\theta - 1}}  \sqrt{\csc^2\theta - 1}
sec {1 \over \sqrt{1 - \operatorname{sen}^2\theta}}  {1 \over \cos \theta}  \sqrt{1 + \tan^2\theta}  {\sqrt{1 + \cot^2\theta} \over \cot \theta} \sec\theta\  {\csc\theta \over \sqrt{\csc^2\theta - 1}}
csc {1 \over \operatorname{sen} \theta}  {1 \over \sqrt{1 - \cos^2 \theta}}  {\sqrt{1 + \tan^2\theta} \over \tan \theta}  \sqrt{1 + \cot^2 \theta}  {\sec \theta \over \sqrt{\sec^2\theta - 1}}  \csc \theta\

.







No hay comentarios:

Publicar un comentario